Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control
نویسندگان
چکیده
Reinforcement learning and evolutionary strategy are two major approaches in addressing complicated control problems. Both have strong biological basis and there have been recently many advanced techniques in both domains. In this paper, we present a thorough comparison between the state of the art techniques in both domains in complex continuous control tasks. We also formulate the parallelized version of the Proximal Policy Optimization method and the Deep Deterministic Policy Gradient method.
منابع مشابه
Policy Search in Continuous Action Domains: an Overview
Continuous action policy search, the search for efficient policies in continuous control tasks, is currently the focus of intensive research driven both by the recent success of deep reinforcement learning algorithms and by the emergence of competitors based on evolutionary algorithms. In this paper, we present a broad survey of policy search methods, incorporating into a common big picture the...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملOptimization Algorithms Incorporated Fuzzy Q-Learning for Solving Mobile Robot Control Problems
Designing the fuzzy controllers by using evolutionary algorithms and reinforcement learning is an important subject to control the robots. In the present article, some methods to solve reinforcement fuzzy control problems are studied. All these methods have been established by combining Fuzzy-Q Learning with an optimization algorithm. These algorithms include the Ant colony, Bee Colony and Arti...
متن کاملReproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
Policy gradient methods in reinforcement learning have become increasingly prevalent for state-of-the-art performance in continuous control tasks. Novel methods typically benchmark against a few key algorithms such as deep deterministic policy gradients and trust region policy optimization. As such, it is important to present and use consistent baselines experiments. However, this can be diffic...
متن کاملDeep Reinforcement Learning for Robotic Manipulation - The state of the art
The focus of this work is to enumerate the various approaches and algorithms that center around application of reinforcement learning in robotic manipulation tasks. Earlier methods utilized specialized policy representations and human demonstrations to constrict the policy. Such methods worked well with continuous state and policy space of robots but failed to come up with generalized policies....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.00006 شماره
صفحات -
تاریخ انتشار 2017